Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.

Identifieur interne : 001F77 ( Main/Exploration ); précédent : 001F76; suivant : 001F78

Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.

Auteurs : Jing Wang [États-Unis] ; Yu Yang ; Huiguang Zhu ; Janet Braam ; Jerald L. Schnoor ; Pedro J J. Alvarez

Source :

RBID : pubmed:24870363

Descripteurs français

English descriptors

Abstract

Manipulation of the organic coatings of nanoparticles such as quantum dots (QDs) to enhance specific applications may also affect their interaction and uptake by different organisms. In this study, poplar trees (Populus deltoides × nigra) were exposed hydroponically to 50-nM CdSe/CdZnS QDs coated with cationic polyethylenimine (PEI) (35.3 ± 6.6 nm) or poly(ethylene glycol) of anionic poly(acrylic acid) (PAA-EG) (19.5 ± 7.2 nm) to discern how coating charge affects nanoparticle uptake, translocation, and transformation within woody plants. Uptake of cationic PEI-QDs was 10 times faster despite their larger hydrodynamic size and higher extent of aggregation (17 times larger than PAA-EG-QDs after 11-day incubation in the hydroponic medium), possibly due to electrostatic attraction to the negatively charged root cell wall. QDs cores aggregated upon root uptake, and their translocation to poplar shoots (negligible for PAA-EG-QDs and 0.7 ng Cd/mg stem for PEI-QDs) was likely limited by the endodermis. After 2-day exposure, PEI and PAA-EG coatings were likely degraded from the internalized QDs inside the plant, leading to the aggregation of the metallic cores and a "red-shift" of fluorescence. The fluorescence of PEI-QD aggregates was stable inside the roots through the 11-day exposure period. In contrast, the PAA-EG-QD aggregates lost fluorescence inside the plant after 11 days probably due to destabilization of the coating, even though these QDs were stable in the hydroponic solution. Overall, these results highlight the importance of coating properties in the rate and extent to which nanoparticles are assimilated by plants and potentially introduced into food webs.

DOI: 10.1021/es501425r
PubMed: 24870363


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil & Environmental Engineering, ‡Department of Chemistry, and §Department of Biochemistry & Cell Biology, Rice University , Houston, Texas 77005, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil & Environmental Engineering, ‡Department of Chemistry, and §Department of Biochemistry & Cell Biology, Rice University , Houston, Texas 77005</wicri:regionArea>
<wicri:noRegion>Texas 77005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yu" sort="Yang, Yu" uniqKey="Yang Y" first="Yu" last="Yang">Yu Yang</name>
</author>
<author>
<name sortKey="Zhu, Huiguang" sort="Zhu, Huiguang" uniqKey="Zhu H" first="Huiguang" last="Zhu">Huiguang Zhu</name>
</author>
<author>
<name sortKey="Braam, Janet" sort="Braam, Janet" uniqKey="Braam J" first="Janet" last="Braam">Janet Braam</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
<author>
<name sortKey="Alvarez, Pedro J J" sort="Alvarez, Pedro J J" uniqKey="Alvarez P" first="Pedro J J" last="Alvarez">Pedro J J. Alvarez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24870363</idno>
<idno type="pmid">24870363</idno>
<idno type="doi">10.1021/es501425r</idno>
<idno type="wicri:Area/Main/Corpus">002174</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002174</idno>
<idno type="wicri:Area/Main/Curation">002174</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002174</idno>
<idno type="wicri:Area/Main/Exploration">002174</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil & Environmental Engineering, ‡Department of Chemistry, and §Department of Biochemistry & Cell Biology, Rice University , Houston, Texas 77005, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil & Environmental Engineering, ‡Department of Chemistry, and §Department of Biochemistry & Cell Biology, Rice University , Houston, Texas 77005</wicri:regionArea>
<wicri:noRegion>Texas 77005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yu" sort="Yang, Yu" uniqKey="Yang Y" first="Yu" last="Yang">Yu Yang</name>
</author>
<author>
<name sortKey="Zhu, Huiguang" sort="Zhu, Huiguang" uniqKey="Zhu H" first="Huiguang" last="Zhu">Huiguang Zhu</name>
</author>
<author>
<name sortKey="Braam, Janet" sort="Braam, Janet" uniqKey="Braam J" first="Janet" last="Braam">Janet Braam</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
<author>
<name sortKey="Alvarez, Pedro J J" sort="Alvarez, Pedro J J" uniqKey="Alvarez P" first="Pedro J J" last="Alvarez">Pedro J J. Alvarez</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="eISSN">1520-5851</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acrylic Resins (chemistry)</term>
<term>Anions (chemistry)</term>
<term>Biological Transport (MeSH)</term>
<term>Biotransformation (MeSH)</term>
<term>Cadmium (analysis)</term>
<term>Cadmium Compounds (chemistry)</term>
<term>Cations (chemistry)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Hydrodynamics (MeSH)</term>
<term>Hydroponics (MeSH)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Shoots (metabolism)</term>
<term>Polyethylene Glycols (chemistry)</term>
<term>Polyethyleneimine (chemistry)</term>
<term>Polymers (chemistry)</term>
<term>Populus (metabolism)</term>
<term>Quantum Dots (metabolism)</term>
<term>Selenium (analysis)</term>
<term>Selenium Compounds (chemistry)</term>
<term>Solutions (MeSH)</term>
<term>Static Electricity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anions (composition chimique)</term>
<term>Biotransformation (MeSH)</term>
<term>Boîtes quantiques (métabolisme)</term>
<term>Cadmium (analyse)</term>
<term>Cations (composition chimique)</term>
<term>Composés du cadmium (composition chimique)</term>
<term>Composés du sélénium (composition chimique)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Culture hydroponique (MeSH)</term>
<term>Hydrodynamique (MeSH)</term>
<term>Polymères (composition chimique)</term>
<term>Polyéthylène glycols (composition chimique)</term>
<term>Polyéthylèneimine (composition chimique)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Racines de plante (métabolisme)</term>
<term>Résines acryliques (composition chimique)</term>
<term>Solutions (MeSH)</term>
<term>Sélénium (analyse)</term>
<term>Transport biologique (MeSH)</term>
<term>Électricité statique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Cadmium</term>
<term>Selenium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Acrylic Resins</term>
<term>Anions</term>
<term>Cadmium Compounds</term>
<term>Cations</term>
<term>Polyethylene Glycols</term>
<term>Polyethyleneimine</term>
<term>Polymers</term>
<term>Selenium Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Cadmium</term>
<term>Sélénium</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Anions</term>
<term>Cations</term>
<term>Composés du cadmium</term>
<term>Composés du sélénium</term>
<term>Polymères</term>
<term>Polyéthylène glycols</term>
<term>Polyéthylèneimine</term>
<term>Résines acryliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Populus</term>
<term>Quantum Dots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Boîtes quantiques</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Biotransformation</term>
<term>Crosses, Genetic</term>
<term>Hydrodynamics</term>
<term>Hydroponics</term>
<term>Solutions</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biotransformation</term>
<term>Croisements génétiques</term>
<term>Culture hydroponique</term>
<term>Hydrodynamique</term>
<term>Solutions</term>
<term>Transport biologique</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Manipulation of the organic coatings of nanoparticles such as quantum dots (QDs) to enhance specific applications may also affect their interaction and uptake by different organisms. In this study, poplar trees (Populus deltoides × nigra) were exposed hydroponically to 50-nM CdSe/CdZnS QDs coated with cationic polyethylenimine (PEI) (35.3 ± 6.6 nm) or poly(ethylene glycol) of anionic poly(acrylic acid) (PAA-EG) (19.5 ± 7.2 nm) to discern how coating charge affects nanoparticle uptake, translocation, and transformation within woody plants. Uptake of cationic PEI-QDs was 10 times faster despite their larger hydrodynamic size and higher extent of aggregation (17 times larger than PAA-EG-QDs after 11-day incubation in the hydroponic medium), possibly due to electrostatic attraction to the negatively charged root cell wall. QDs cores aggregated upon root uptake, and their translocation to poplar shoots (negligible for PAA-EG-QDs and 0.7 ng Cd/mg stem for PEI-QDs) was likely limited by the endodermis. After 2-day exposure, PEI and PAA-EG coatings were likely degraded from the internalized QDs inside the plant, leading to the aggregation of the metallic cores and a "red-shift" of fluorescence. The fluorescence of PEI-QD aggregates was stable inside the roots through the 11-day exposure period. In contrast, the PAA-EG-QD aggregates lost fluorescence inside the plant after 11 days probably due to destabilization of the coating, even though these QDs were stable in the hydroponic solution. Overall, these results highlight the importance of coating properties in the rate and extent to which nanoparticles are assimilated by plants and potentially introduced into food webs. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24870363</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5851</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.</ArticleTitle>
<Pagination>
<MedlinePgn>6754-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/es501425r</ELocationID>
<Abstract>
<AbstractText>Manipulation of the organic coatings of nanoparticles such as quantum dots (QDs) to enhance specific applications may also affect their interaction and uptake by different organisms. In this study, poplar trees (Populus deltoides × nigra) were exposed hydroponically to 50-nM CdSe/CdZnS QDs coated with cationic polyethylenimine (PEI) (35.3 ± 6.6 nm) or poly(ethylene glycol) of anionic poly(acrylic acid) (PAA-EG) (19.5 ± 7.2 nm) to discern how coating charge affects nanoparticle uptake, translocation, and transformation within woody plants. Uptake of cationic PEI-QDs was 10 times faster despite their larger hydrodynamic size and higher extent of aggregation (17 times larger than PAA-EG-QDs after 11-day incubation in the hydroponic medium), possibly due to electrostatic attraction to the negatively charged root cell wall. QDs cores aggregated upon root uptake, and their translocation to poplar shoots (negligible for PAA-EG-QDs and 0.7 ng Cd/mg stem for PEI-QDs) was likely limited by the endodermis. After 2-day exposure, PEI and PAA-EG coatings were likely degraded from the internalized QDs inside the plant, leading to the aggregation of the metallic cores and a "red-shift" of fluorescence. The fluorescence of PEI-QD aggregates was stable inside the roots through the 11-day exposure period. In contrast, the PAA-EG-QD aggregates lost fluorescence inside the plant after 11 days probably due to destabilization of the coating, even though these QDs were stable in the hydroponic solution. Overall, these results highlight the importance of coating properties in the rate and extent to which nanoparticles are assimilated by plants and potentially introduced into food webs. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil & Environmental Engineering, ‡Department of Chemistry, and §Department of Biochemistry & Cell Biology, Rice University , Houston, Texas 77005, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Huiguang</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Braam</LastName>
<ForeName>Janet</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnoor</LastName>
<ForeName>Jerald L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alvarez</LastName>
<ForeName>Pedro J J</ForeName>
<Initials>PJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000180">Acrylic Resins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000838">Anions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019187">Cadmium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002412">Cations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018036">Selenium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012996">Solutions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3WJQ0SDW1A</RegistryNumber>
<NameOfSubstance UI="D011092">Polyethylene Glycols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Q93RCW27E</RegistryNumber>
<NameOfSubstance UI="C006903">carbopol 940</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9002-98-6</RegistryNumber>
<NameOfSubstance UI="D011094">Polyethyleneimine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>A7F646JC5C</RegistryNumber>
<NameOfSubstance UI="C058667">cadmium selenide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>H6241UJ22B</RegistryNumber>
<NameOfSubstance UI="D012643">Selenium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000180" MajorTopicYN="N">Acrylic Resins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000838" MajorTopicYN="N">Anions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001711" MajorTopicYN="N">Biotransformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019187" MajorTopicYN="N">Cadmium Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002412" MajorTopicYN="N">Cations</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057446" MajorTopicYN="N">Hydrodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018527" MajorTopicYN="N">Hydroponics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011092" MajorTopicYN="N">Polyethylene Glycols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011094" MajorTopicYN="N">Polyethyleneimine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045663" MajorTopicYN="N">Quantum Dots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012643" MajorTopicYN="N">Selenium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018036" MajorTopicYN="N">Selenium Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012996" MajorTopicYN="N">Solutions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24870363</ArticleId>
<ArticleId IdType="doi">10.1021/es501425r</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Alvarez, Pedro J J" sort="Alvarez, Pedro J J" uniqKey="Alvarez P" first="Pedro J J" last="Alvarez">Pedro J J. Alvarez</name>
<name sortKey="Braam, Janet" sort="Braam, Janet" uniqKey="Braam J" first="Janet" last="Braam">Janet Braam</name>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
<name sortKey="Yang, Yu" sort="Yang, Yu" uniqKey="Yang Y" first="Yu" last="Yang">Yu Yang</name>
<name sortKey="Zhu, Huiguang" sort="Zhu, Huiguang" uniqKey="Zhu H" first="Huiguang" last="Zhu">Huiguang Zhu</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24870363
   |texte=   Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24870363" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020